Research on several key technologies in practical speech emotion recognition

نویسنده

  • Chengwei Huang
چکیده

In this dissertation the practical speech emotion recognition technology is studied, including several cognitive related emotion types, namely fidgetiness, confidence and tiredness. The high quality of naturalistic emotional speech data is the basis of this research. The following techniques are used for inducing practical emotional speech: cognitive task, computer game, noise stimulation, sleep deprivation and movie clips. A practical speech emotion recognition system is studied based on Gaussian mixture model. A two-class classifier set is adopted for performance improvement under the small sample case. Considering the context information in continuous emotional speech, a Gaussian mixture model embedded with Markov networks is proposed. A further study is carried out for system robustness analysis. First, noise reduction algorithm based on auditory masking properties is fist introduced to the practical speech emotion recognition. Second, to deal with the complicated unknown emotion types under real situation, an emotion recognition method with rejection ability is proposed, which enhanced the system compatibility against unknown emotion samples. Third, coping with the difficulties brought by a large number of unknown speakers, an emotional feature normalization method based on speaker-sensitive feature clustering is proposed. Fourth, by adding the electrocardiogram channel, a bi-modal emotion recognition system based on speech signals and electrocardiogram signals is first introduced. The speech emotion recognition methods studied in this dissertation may be extended into the cross-language speech emotion recognition and the whispered speech emotion recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Statistical Variation Analysis of Formant and Pitch Frequencies in Anger and Happiness Emotional Sentences in Farsi Language

Setup of an emotion recognition or emotional speech recognition system is directly related to how emotion changes the speech features. In this research, the influence of emotion on the anger and happiness was evaluated and the results were compared with the neutral speech. So the pitch frequency and the first three formant frequencies were used. The experimental results showed that there are lo...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.09364  شماره 

صفحات  -

تاریخ انتشار 2017